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Abstract. The h-deformation of functions on the Grassmann matrix grolg2) is presented
via a contraction ofGr,(2). As an interesting point, we have seen that, in the case of the
h-deformation, bothR-matrices ofGL,(2) and Gr,(2) are the same.

In recent years a new class of quantum deformations of Lie groups and algebras, the so-called
h-deformation, has been intensively studied by many authors [1-9].x7deformation of
matrix groups can be obtained using a contraction procedure. We start with a quantum
plane and its dual and follow the contraction method of [9].

Consider they-deformed algebra of functions on the quantum plane [10] generated by
x’, y" with the commutation rule

X'y =qy'x'. 1)
Applying a change of basis in the coordinates of the (1) by use of the following matrix:
1 7 h
= = — 2
e=(g 1) =4 @
in the limit ¢ — 1 one arrives [9] at
xy = yx + hy?. 3)

We denote the quantumplane byR,(2).
Similarly, one obtains the dual quantuimplane R;(2) as generated by, £ with the
relations

£2=0 n® = hné né +&n = 0. 4)

~ o
i- ( p )
y 6
be a Grassmann matrix iGr(2). All matrix elements ofA are Grassmann. We consider

linear transformations with the following properties:
AR, (2 — R:(2) A RI(2) — Ry(2). (5)

Let

& E-mail address: celik@msu.edu.tr
| E-mail address: hizel@sariyer.cc.itu.edu.tr

0305-4470/97/134677+04$19.5@C) 1997 IOP Publishing Ltd 4677



4678 S Celik and E Hizel

The action on the points ak,(2) and R;(2) of Ais

)= D0 G)=CDE)

We assume that the entries afcommute with the coordinates &f,(2) and anticommute
with the coordinates oR;(2). As a consequence of the linear transformations in (5) the

vectors

(n) and <x>

§ y

should belong toR;(2) and R,(2), respectively, which impose the following-
anticommutation relations between the matrix elementa:of
af + Ba = h(ad + By) ay +ya=0
By +vB=h(@y —ya) B3+ = —h(ad + yp)
ad + o = h(ya — 8y) y§+déy =0
o = —hya B% = h(BS — apf + hasd) y2=0 82 = hdy.

These relations define tlkedeformation of functions on the Grassmann matrix grGu2),
Grh (2)

Alternatively, relations (7) can be obtained by the following similarity transforma-
tion [9]:

O

A'=gAg™! (8)
which in our case gives
'=a+ B =8+ " (s "
¥ =eT - LT O R

©)

= §=p5—
v =y ==

and then taking thg — 1 limit. Hereo', g/, y’ and$’ are generators ofrr,(2), which
satisfy the following commutation relations [11, 12]:

aB +q7pe’ =0 oy +q o =0

Y8 +q7 %y =0 B8 +qp =0

a8 +8a' =0 a?=p%?=9y%2=8%2=0

By +v'B =(—qhHd.
Substituting (9) in (10) one obtains the set of relations (7) above.

The algebra (10) is associative under multiplication and the relations in (10) may be
also expressed in a tensor product form [11, 12]:

(10)

R A} Ay = —AL AR, (11)
where
g+qt 0 0 0
0 2 g t—¢q 0
R, = » : (12)
0 qg—q 2 0

0 0 0 g+qt
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Here, since the matrix elements at are all Grassmannian, for the conventional tensor
products

A=A®I and  A,=I®A (13)
one can write (no-grading)
(A = A8, (Ap)y = &'y AT, (14)

where$ denotes the Kronecker delta. Note that in the ligmit— 1 the matrixR, becomes
twice the 4x 4 identity matrix. Note also that although the algebra (10) is an associative
algebra of the matrix entries of, R, does not satisfy the quantum Yang-Baxter equation
(QYBE)

R12R13R23 = R3R13Rq).

Thus the Yang-Baxter equation is not a necessary condition for associativity (see the
paragraph after (19) for other remarks). It is obvious that a change of basis Ry, tBg
leads to the similarity transformation

o~

A= g’lx'g (15)

for the quantum Grassmann group and the following similarity transformation for the
correspondingR-matrix:

Rig=(g®8) 'Ry (g® ) (16)
If we define theR-matrix R;, as
R, = lim Ry, 17)
g—1
after dividing by 2 we obtain
1 —h h R
R, — 0 1 0 —h (18)
0 0 1 &
0 0 0 1
Substituting (9) and (16) in (11) we arrive at the— 1 limit:
RhA\lA\z = —Zggth. (19)

Another interesting point is that, although thiematrices of GL,(2) and Gr,(2) are

different, in the case of thé-deformation, theR-matrices of GL,(2) and Gr,(2) are

the same (see [9] for thR-matrix R, of GL,(2)). In the limitg —> 1 both theR-matrices

of GL,(2) and Gr,(2) become the same %4 4 identity matrix. Although theR-matrix R,

of Gr,(2) does not satisfy the QYBE, thR-matrix R, of Gr,(2) does satisfy the QYBE.
Since the entries oft are all Grassmann, a proper inverse cannot exist. However, the

left and right inverses oft can be constructed:

— S+ h h
AL1:< thy B+ “) (20)
—~ —6 hé
e ( pt ) 21)
-y a+hy
It is now easy to show that
AfA =4, (22)

AAL = Ag (23)
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where
Ap = By +da Ar = yB+asd. (24)

In this caseA; and A may at least formally be considered as the left and right quantum
(dual) determinants, respectively. Note that one can write

A ARt = AT Ag. (25)

Final remarks. We know that all the matrix elements of are Grassmann (odd or
fermionic) if A is a Grassmann matrix, i.e. it belongs @-(2). Now let A and A’ be

any two anticommuting matrices (i.e. any element of Grassmann matrices whose elements
A anticommutes with any element ﬂf) that satisfy (10). Then, all the matrix elements of

a productA = AA’ are bosonic (or even) since the elements of the matrix product of two
Grassmann matrices are all bosonic. It can also be verified that the matrix elements of
satisfy g-commutation relations oL, (2), i.e. for

= 5E 5)-(0)
vy 8)\y ¢ c d (26)
ab = gba ac =gqca bc =cb
etc. That is, if
A, A €Gry,2) = A=AAeGL,(2.

In view of these facts, we can say that there may be no coproduct of theXoim= AQA.

For this coproduct is invariant under tecommutation relations (26) affL,(2). These
facts also prevent the existence of a coproduct of the fm(m) Al@A Wheret2 is an
involution acting on the elements of. Hence a construction of the coproduct along the
lines of [13] is also not possible.
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